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1 Signals and models

Actions in the real world produce observable outputs that can be characterized as signals. Signals can be
discrete (symbols in an alphabet) or continous (speech samples), stationary or non stationary (signal properties
vary with time), pure or corrupted from other sources (noise) or by transmission problems. Real world signals
can be characterized in terms of signals models for several reasons:

1. A theoretical description or model can be used to process the output, enhance the signal, remove the noise
and undo transmission distortions.

2. To learn about the signal source (the real world process) without having the source available. Very
interesting when the cost of obtaining the signals from the actual source is high.

3. To develope practical systems for prediction, identification or recognition of the same signals in sources
different from the original ones.

In general, signal models to characterize the properties of a signal can be classified into deterministic or
statistical models. Deterministic models are based on some fixed and specific properties of the signal that must
be measured in real examples. Statistical models characterize the signal as a parametric random process whose
parameters must be estimated in a well-defined manner.

Cells functioning is essentially based on the mechanisms of transmission of biochemical signals among differ-
ent cellular components. Models have been proposed to simulate the different signal pathways (growth, genetics,
defense, ...) that occur simultaneously into the cell. Bioinformatics has provided uncountable models to deal
with genomic sequences in gene prediction, modelling of protein structure, configuration of regulatory elements
and other related problems classified into the field of sequence analysis.

Once a collection of data containing a signal has been obtained, different methods can be used to build a
representation or model to characterize that family of sequences. This model will be also useful to detect the
signal in other collections of sequences. Deterministic models such as consensus, regular expressions, position
weight matrices or the basic pairwise or a multiple alignment of sequences are nowadays very common and
well-known tools.

Important statistical models to represent a signal from a set of common sequences are discriminant analysis,
iterative methods (e.g. Expectation Maximization or Gibbs sampling), Markov chains and Hidden Markov
models (HMM). From the AI, non symbolic approaches as neural networks and other classification methods as
Decision Trees or Support Vector Machines have been used to solve the same problems as well.

2 Markov chains

A discrete Markov process is a system S = {S1,S2,...,Sn} evolving from one state to another during a set of
time instants t = {1,2,...,T} associated with state changes. A state transition is defined according to a set of
probabilities associated with the current and the predecessor states. For the case of discrete first order Markov
chains, the state transition function is based on the current state and the previous state (g and g—1):

a(i,j) = P(q = Sjlai—1 = S;), 1<i,j <N (1)

with the coefficients having the properties
a(i,j) >0 (2)

N
Za(i,j) =1 (3)

Jj=1

The initial state probabilities are denoted as:
(i) =P(@ =95;), 1<i<N (4)

Starting probabilities can be also modelled by adding an initial state in the Markov chain, the beginning
of the sequence. Traditionally the end of a sequence of observations is not modelled because it is assumed to
finish anywhere, but an extra terminal state could be added to model a distribution of lenghts of the sequence.
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The output of the process is the set of states at each instant of time, each one corresponding to a physical
event (observable Markov model). Given a sequence of observations O = {O1,0a,...O7} corresponding to the
instants t1,ts,...tr, it is possible to determine the probability of O given the model A = (N, {a(i, )}, {w(i)})
as:

P(O|N) = P(01) - P(04]01) ... P(O7|O7—1) = 7(01) - a(O1, 0) - a(02,03) ... .a(Op_1, Or) (5)

3 Hidden Markov models (HMM)

Markov chains are useful for discrimination. Given a sequence and a set of examples containing a signal, a
Markov model can be designed to recognize the part of the sequence containing the signal in the examples (real
model) and a second Markov model can be developed to identify the rest of the sequence (false model). Then,
both Markov models are used on unannotated sequences to find the signal within, measuring the value for every
window of z elements in every sequence (window sliding) and computing a likelihood ratio between both values
to decide whether a region of the sequence is containing or not the signal.

However, the boundaries between a signal and the rest of element in the observations sequence are not
exactly defined. On the contrary, there could be some overlapping effect between both regions or models that
can not be detected using the window sliding technique because the lenght of the correct window is unknown
and is changing from one example to another. A more satisfactory approach is to build a single model for the
whole sequence of observations that incorporates both the real and the false previous models.

Then, the concept of a Markov model is extended to include the case where the observation is a probabilistic
function of the state. Thus, the final model is a doubly embedded random process with: (1) a hidden stochastic
process (not observable) that can observed through (2) another set of stochastic processes that produce the
sequence of observations.

3.1 The urn and ball model

There are N urns containing colored balls in different proportions. Balls are in M distinct colours. The
procedure to obtain a sequence of T observations is:

1. Init the clock (t = 1)
Select according to some random process, one of the urns
Extract a ball from the urn at random, recording the colour as observation

Replace the ball into the urn

ATl o

Update new instant transition (¢ = ¢ + 1) and repeat the process until the sequence of observations is
finished (t =T)

The whole process generates a finite observation sequence of colours (observable output) but the sequence
of urns dictated by some state transition function will be totally unknown (hidden states).

3.2 Elements of a HMM

1. States, S = {S1,S>...Sn} (current state is denoted as ¢;): hidden but in many applications with some
physical significance attached (e.g. urns in the above example, ins-del-match operations in the alignment
of genomic sequences or exons and introns in a genefinding program).

2. Observations, V = {V;, V5 ...V }: the symbols emitted by the states correspond to the physical output
of the system being modelled (e.g. balls in the above example, nucleotides in the alignment of genomic
sequences, protein coding sequence in a genefinding program)

3. The state transition probability distribution A = {a(i,j)}:



E. Blanco (eblanco@imim.es): Hidden Markov Models - 2003

PIRED) = oyid)
P{BLUE) =Db4i2)
PIGREEN] =byi3)
PITELLOW) = b,i4]

PIORANGE) = bylm)

URN 2

PIREDY bgi 1)
PIBLUED = Dal2]
PIGREEN} = b3l3]
PATELLOW ) = bgld)

PIORANGE] = balm}

PIRED) = byl1)
PIBLUE] = byl2)
FIGREEN) = byl3)
PITELLOW) = byl4)

PUORANGE] = by(Mm)

o= {GREEN, GREEN, BLUE, RED, YELLOW, RED, ......., BLUE }

Figure 1: The urn and ball model: the observable output is the sequence of colours while the hidden model is
the election procedure of states [1].

1<j<N
bi(k) = P(Velge = S), 15050 7
5. The initial state distribution II = {7 (i)}:
(i) =Pl@ =S;), 1<i<N (8)

Given the appropiate values of N, M, A, B and II, the HMM can be used as a generator to give a sequence
of observations O = {01, Oa,...O7} where each individual observation is one of the symbols in V:

1. Choose an initial state g1 = S; (t =1)

2. Obtain O =V}, according to b;

3. Transit to a new state ¢.+1 = S; according to a(7,j) and the current state (¢t =¢+ 1)
4

. Return to step 2 if £ < T, terminate the procedure otherwise

4 The three basic problems

Once the main framework of the HMM has been defined there are several interesting problems that must be
solved to use the model in real-world applications:

1. The likelihood question
Given a sequence of observations O = {0y,03,...0r} and a HMM X = (N, M, A, B,1I), which is the
probability P(O|A) that the observed sequence was produced by the model?

2. The decoding question
Given a sequence of observations O = {01,03,...0r} and a HMM X = (N, M, A, B,1I), which is the
most probable state path @ = {q1, ¢, ...qr} across the model that produced that observed sequence?

3. The learning question (The training problem)
Given a sequence of observations O = {O1,0a3,...07} and a HMM X\ = (N, M, A, B,1I), how do we
adjust the model parameters to maximize the probability P(O|\)?
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Figure 2: Forward procedure: the probabilities to generate every preffix of the sequence of observations are
transferred from every previous instant ¢ and state ¢; to the next instant ¢ + 1 and state g;4+1 as a propagation
network [1].

5 The likelihood question

Given a model representing a signal or a family of signals, we would like to know whether a new sequence of
observations O = {O1,03,...0r} is a member of the previous family or not. In terms of the HMM, we are
interested in the probability P(O|)) that such a sequence was produced by the current model.

Because many different state paths could produce the same sequence O, we must compute and add the
probability for all possible paths @ = {q1, ¢z, ... gr} generating the sequence of observations to obtain the final
probability P(O|\)*:

PO = > PO,QN = > m(aq1) by, (01) - alar, ) - by (0s) - algz,q3) - - - a(qr—1,q7) - byr (O1)  (9)
YQ—O YQ—O

Obviously, the number of paths increases exponentially with the length of the sequence so that in practice,
the computation of the recurrence using this direct definition is not feasible. Cost: @(2T'NT) where 27T is the
cost of computing the probability for a single path and N7 is the number of paths of length 7.

5.1 The forward algorithm

Using dynamic programming techniques, a family of recursive algorithms known as iterative propagation algo-
rithms provides feasible solutions to solve several problems related to the HMM. These methods are based on
the transmission of results through the underlying directed graph structure associated to every HMM.

Let us define the problem of computing the probability to generate the given sequence of observations
in terms of preffixes of the input: the forward variable ay(i) is the probability to generate the subsequence
0105 ...0; provided that the last symbol was generated from the state S;.

UIn fact, it is not necessary to discriminate between paths producing or not the sequence of observations. In some state in the
path that can not generate O, there will be an emission probability zero for the given observation in that instant of time.
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Oét(’L.) = P(01 .. .Ot,qt = Sz|>\) (10)

and then, the probability that the sequence of observations O was produced by the model A becomes the
probability of finishing in all of the possible states:

PO = Y PO:1...01,qr =S} = > ar(i (11)
i=1..N i=1..N
The following equation describes the process of (forward) transmission of the probabilities previously com-
puted from the previous states to the current one taking into account the produced sequence of observations
until that moment and the current observation:

. . .. 1<j<N
()= D i) ali )] b;(On), ZiE7 (12)
i=1..N
The initial values for o are defined as:
a1(i) =7(i) - b;(01), 1<i<N (13)

Algorithm 1 The Forward algorithm. Cost: 8(N2T)
INPUT: A= (N, M, 4, B,1),0 = {01,04,...,01}
OUTPUT: p= P(O|))

(* Initialize the forward variable *)
1: fori=1...N do
(651 (Z) = W(Z) - bl(Ol)

3: endfor

(* Forward procedure *)

4: fort=2...T do

5. for j=1...N do (* Compute the paths finishing on every state S; *)

6: sum = 0

7: for i=1...N do (* Retrieve the forward values coming from previous states S; *)
8: sum = sum + a4 (7) - a(i, j)

9: endfor

10: Clt+1(j) = sum 'bj(OtJrl)

11:  endfor

12: endfor

(* Final probability *)
13: p=20
14: fori=1...N do
15: p=p+ i)
16: endfor

6 The decoding question

With the Forward algorithm, it is computed the probability P(O|)) that a sequence of observations was produced
by a given model. Thus, this probability can be rewritten in terms of a score or p-value to accept or not the
sequence as a new member of the family that was used to build the HMM. However, it is also interesting to
discover which is the most probable state path @ = {q1, ¢2, . .. ¢r} across the model that produced that observed
sequence. In fact, this path of states (with some predefined meaning) divides the sequence into different parts
that can be classified according to the presence or absence of the different signals hidden in the model (e.g.
exons and introns in a HMM-genefinder).
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6.1 The Viterbi algorithm

The most probable path (optimal, best) @* can be recursively found without generating all of the paths along
the model, dividing the sequences of observations and states in preffixes of paths as in the case of the Forward
algorithm. Nevertheless, at every layer of nodes we are now only interested in the path mazimizing the prob-
ability to produce the sequence of observations. Thus, selecting one path implies discarding the other N — 1
paths arriving at the current node because they have a lower probability until that stage?.

As in the forward algorithm, the variable d;(7) is defined as the best score (highest probability) along a single
path ending in a given a state S;, that can be obtained at time ¢, producing the first ¢ observations:

(5t(l) = maqu,,,qkl [P(ql gy = i, 01 e Ot|>\)] (14)
and by induction,
. . .. 1<i,j <N
01 (i) = [maw; 8,(0) - ali, )] b (Oryn), 5 VS (15)

The initial values are:

51(6) = 7(3) - bi(O1), 1<i<N (16)
For every state j and instant ¢, it is necessary to keep track of the argument which maximized d;:
. .. 1<j<N
Y (j) = argmazi<i<n [6t,1 - a(z,])], 2<t<T (17)
with initial values:
Bi(i) =0, 1<i<N (18)
Then, the highest probability P* and the associated path @Q* can be retrieved as:
P = mar;<i<nN [(5T(Z)] (19)
a7 = argmazi<i<n [07(i)] (20)
a = Yir1(qty,), t=T-1,T-2...1 (21)

7 The learning question

Given a HMM and a set of training sequences X'...X™, there is not any method to estimate the model
parameters which maximize the probability of the observation (NP-complete problem). However, there are
several methods to adjust a HMM to locally maximize the value P(O|)) for every training sequence such as
the Baum-Welch algorithm (a well-known variant of expectation-maximization procedure) or different forms of
gradient descent.

The Baum-Welch algorithm is based on the same concept as the Forward and Viterbi procedures, that is,
computing recursively the best preffixes of the general paths in such a way that it is not necessary to maintain
the whole tree of combinations at every stage. In addition to this basic idea, as probabilities can be added
following left-right or right-left connections, the best suffix of the complete sequence of observations and states
can be computed using a variant of the Forward algorithm, the Backward algorithm. Thus, given a state of
the HMM and one observation, the information computed from the best partial paths finishing (Forward) and
starting (Backward) on such state can be combined to maximize the global value P(O|\).

2Due to the process of construction, the property of additivity must be observed and therefore the order relationship between
two different paths arriving at the same node will be conserved even when new elements are included in the solution (both will
share the rest of the solution).
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Algorithm 2 The Viterbi algorithm. Cost: §(N?T)
INPUT: A= (N, M,A4,B,1),0 = {01,05 .07}
OUTPUT: The best Q* = {q}, 45, -.¢5} such that P* = P(Q*,O|\)

(* Initialize the ¢ and 1) variables *)

1: fori=1...N do

2: 51 (Z) = 7T(Z) . bZ(Ol)
3: 1/)1(2) =0

4: endfor

(* Viterbi procedure *)

5: for t =2...T do (* Compute the best complete path finishing on every state S; *)
6: forj=1...N do

7: max = 0

8: Ye(j) =0

9: for i =1...N do (* Select the best path coming from every previous state S; *)
10: if (8¢(4) - a(i,7) > max) then

11: max = §(4) - a(i, ])

12: Ye(j) =i

13: endif

14: endfor

15: 6t+1(j) = max 'bj(Ot—H)

16:  endfor

17: endfor

(* Final processing: obtaining P* and Q* *)
18: P =0
19: fori=1...N do
20: if (5T(Z) > P*) then

21: P* = 6p(i)
22: gr =1

23:  endif

24: endfor

(* Retrieving recursively the sequence of states *)

25: Q* = RetrievePath(Q*, ¢, v, T)

7.1 The Backward algorithm

Let us define the problem of computing the probability to generate the given sequence of observations in terms of
suffixes of the input: the backward variable §;(4) is the probability to generate the subsequence O; 11012 ... 0O,
provided that the ¢-st symbol was generated from the state .S;.

,Bt(l) = P(Ot+1 e OT, qt = Sl|>\) (22)

Now, paths are constructed as suffixes of the whole sequence of states and observations, from the end (Or)
to the beginning (Oy). Therefore, given a state S;, to compute [;(i) is necessary to backpropagate (from right
to left) the values of the probabilities for the paths starting on every state emitting the next symbol (O¢41):

Bei)= Y a(i,j) bj(Or1) - Beragy,  a<i<w (23)

j=1..N

Initialization of # variable is arbitrarily defined as:

Br)=1, 1<i<N (24)
And the final probability must be computed from the probabilities of starting in all of the possible states:
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t t+1
Be(i) Be+1(7)

Figure 3: Backward procedure: the probabilities to generate every suffix of the sequence of observations are
transferred from the following states g;y1 to the current state ¢; as a propagation network [1].

PO = Y pili) (25)
i=1...N

7.2 The Baum-Welch algorithm (Forward-Backward)

Given a set of training sequences X'...X", the learning problem consists on adjusting the parameters to
maximize the value P(X*|)) for each sequence. Considering the independence between the training sequences
of observations, the global likelihood of the model can be written as:

P(X'.. X"\ =TITP(X|N) (26)

The likelihood of the model is exactly the function to maximize (fitness function). In terms of logarithms,
the product becomes a sum and the log likelihood of the model is:

logP(X!'...X"|\) = En: logP (X)) (27)

Estimation of the model parameters A,B and II when the state sequence is known

Also known as supervised learning in AI, the estimation of the initial parameters when the training sequences
have been previously labelled simply consists on recording the states and transitions used in the examples to
update the model (e.g experimentally annotated genes or proteins or precomputed multiple alignments):

1. Count the number of transitions from state i to state j in the training set (a(s, j)).
2. Count the number of emissions of symbol V}, from state i in the training set (b;(V%)).

3. Estimate the significance of every value using a quotient between the value and the total sum of values
(mazimum likelihood estimator). Thus, new values for A, B and II can be computed as:
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Algorithm 3 The Backward algorithm. Cost: §(N>T')
A= (N, M, A, B,1),0 = {01,05 .07}
OUTPUT: p = P(O|N)

(* Initialize the backward variable *)
1: fori=1...N do
Br(i)=1

3: endfor

(* Backward procedure *)

4: fort =T —1...1 do (* Compute the paths starting on every state S; *)

50 fori=1...N do

6: sum = 0

7: for j =1...N do (* Send back the probability values from following states S; *)
8: sum = sum + [a(i, ) - bj(Ors1 - Bri1(5)]

9: endfor

10: B¢(i) = sum

11:  endfor

12: endfor

(* Final probability *)
13: p=0
14: fori=1...N do
15 p=p+ pii)
16: endfor

ali,j a(i, J) <N 28
(4,7) ST J < (28)
bi(Vi) 1<i<N
b;i(Vi) = —F -, 1<k<M 29
(Vi) T (29)
. (i)
m(i) = = (30)
o, TI(1)

To avoid undefined values in the quotients, predetermined pseudocounts are usually added. These pseudo-
counts should reflect the prior knowledge about the probability values (large values for well-based knowledge
and smaller for weaker prior information).

Estimation of the model parameters A, B and II when the state sequence is unknown

Also known as unsupervised learning, the estimation of the values for the HMM is usually calculated using some
type of iterative algorithm. These algorithms will re-estimate the parameters of the model given the training
set, of sequences until a maximum number of iterations is reached or when gains or losses in the global likelihood
of the model are below some fixed threshold.

The main problem of this approach is the selection of the initial values which may lead the estimation
procedure to a local maximum. Once initial values have been introduced, the technique of maximum likelihood
can be employed to re-estimate the model parameters. The number of expected transitions and emissions is
obtained from the forward and backward variables applied to the training sequences.

For a given sequence of the training set, the expected number of transitions from the state S; to the state
S; in the training data are computed through the combination of the forward variable (paths finishing in S;)
and the backward (paths starting in S;) for a given couple of observations (O¢, O¢41) and a model A:

a(i,j) = P(q = Si, @141 = Sj|0, ) (31)



E. Blanco (eblanco@imim.es): Hidden Markov Models - 2003 11

@)

a(7) Be+1(J)
to1 P -y t+2
t t+1

Figure 4: Forward-Backward procedure: the probability to be in a given state S; in the instant ¢ can be deduced
from the probability of finishing on such state emitting the first ¢ symbols and the probability of starting from
that state, emitting the rest of the sequence of observations [1]

Using the forward and backward variables, the value of @ can be computed:

B (i) - a(i, J) - bj(O41) - Be+1(J)

. N : A ;
dim1 E]‘:1 (i) - a(i, j) - bj(Op41) - Be1 ()

The numerator term (observed probability) is normalized using the sum of probabilities over all pairs of states

in the model (sum of probabilities). For the expected emission probabilities, the expected number of times being
in state S; and observing V}, is:

a(i, j) (32)

bi(Vk) = P(qe = Si, Or = Vi |0, \) (33)

(i) - Be(i),i flO; = Vi)

bi(Vi,) = N : (34)
> iz e (i) - Be (i)
Again the numerator is normalized with the probability of being on the state, emitting any symbol.
Finally, for the initial states:
= . ai(t) - Bi(e
1(i) = P(q1 = Si|0,\) = Nl( ) @) (35)

> iz (i) - Bu(4)

Again, new values for A, B and II are estimated from the expected values A, B and II using the method of
maximum likelihood estimation (quotient between observed probability and total sum of probabilities). This
procedure must be repeated for all of the sequences in the training set on each iteration of the Baum-Welch
algorithm.
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Algorithm 4 The Baum-Welch algorithm. Cost: §( MAXITERATIONS n N2T')
A= (N,M,A,B,1I),X = X!, X2, X"
OUTPUT: p= Y7 P(X?\) is a local maximum

(* Initialize the model *)
1: A = InitialModel()

(* EM procedure *)
2: numlterations = 0
3: repeat (* Compute \ using every sequence in the training set *)
4: X = NewModel()
5: forxz=X'...X" do
6: a = computeForwardVars(A, O, z)
7 B = computeBackwardVars(A, O, z)

(* E step: update the values of A, B and II *)
A = updateValues(A, «, 3)
endfor

© ®

(* M step: compute maximum likelihood estimators *)
10: A = estimateModel()\)
11:  likelihood = computeLikelihood(A,0,X)
12:  numlterations = numlterations + 1

13: until numlterations = MAXITERATIONS or Improvement(likelihood) = FALSE

8 Application 1: sequence alignment (profileHMMSs)

The observed variation or conservation on some features in a family of biological sequences can be statistically
described using diferent methods:

e Substitution matrices (e.g PAM and BLOSUM collections) contain the probability that one amino acid
mutates to another. Both are used for pairwise alignments of proteins.

e Position weight matrices are calculated counting the frequency of the four nucleotides at all of the positions
in a set of signals extracted from know examples (e.g. splice sites or transcription factor binding sites).
Then, this matrix can be used to detect the same signal on other sequences.

e Codon usage bias or overrepresentation of oligonucleotides is widely used to predict distinct important
regions in genomic-scale analysis (e.g. genes, CpG islands or promoters).

8.1 Profile hidden Markov model

A profile hidden Markov model (pHMM) is a probabilistic profile derived from a family of sequences (usually
proteins). This profile can be used to identify new members of the same family in large databases of sequences.
pHMMs are HMM with a structure specifically designed to allow position dependent gap penalties (position
sensitive gap scores) to complement the substitution schema provided by HMMs (position sensitive substitution
scores)®. In fact, pHMMs are an alternative to classical multiple sequence alignment methods although both
approaches can be complementary because pHMM can be constructed from a previous multiple alignment or

from scratch.

As pHMM are modelling multiple alignment, the states in a pHMM can be classified as:

1. Match states: they model the columns of the alignment. The emission probabilities are obtained directly
from the frequency of each amino acid in a given position. In fact, every block of Match states without
gaps is actually a position weight matrix.

3Substitution of amino acids in HMMs is implemented with the emission function so that no general substitution matrix is
required.
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Begin f——7m™ — — P End

Figure 5: pHMM common architecture (left-right): squares are match states, diamonds are insertion states and
circles are deletion states. Emission and transition probabilities are used exactly as in the case of simple HMM
to generate a multiple alignment of sequences. [4]

2. Insertion states: they model highly variable regions in the alignment. The composition of those regions
is employed to define the transition and emission probabilities of a given insertion state.

3. Deletion state: they do not emit any symbol (silent states). It is a mechanism to model gaps in blocks
of match states. Deletion states are necessary to skip consecutive match states without implementing all
of the connections between them.

8.2 pHMM Construction from a multiple sequence alignment

A pHMM defines a probability distribution over the whole space of sequences. The objective of the training
process will be to control the shape of that distribution by associating the peaks of the function around members
of the family. Two important decisions must be taken into account:

1. The length of the model: a decision about which multiple alignment columns must be assigned to
match states and which must be modelled with insertion states. The heuristic rule is to consider columns
with more than half gap characters as highly variable regions. MAP (maximum a posteriori) is a dynamic
programming algorithm to find column assignments that maximize the posteriori probabilities of the model
at the same time as fitting the HMM parameters.

2. The parameters of the model A = (A, B,II): Initially, both emission, transition and initial probabilities
can be estimated from the multiple alignment using the technique of maximum likelihood but using counts
restricted to the current block (insert or match state). Again, pseudocounts can be introduced to avoid
that unvisited transitions and emissions can produce errors in the quotients (e.g. Laplace’s rule: add one
in every frequency value).

8.3 Recovering the multiple alignment from the pHMM

Once the values of the multiple alignment have been loaded into the pHMM, the multiple alignment of those
sequences can be retrieved using the Viterbi algorithm, that is, obtaining the best (most probable) path of
states across the pHMM that could have produced that sequence. Thus, aligning the sequence to the model, a
sequence of states (enumerated M,I and Ds) will be obtained. Amino acids in the match regions will correspond
to the shadow parts in the previous multiple alignment. Amino acids in the insert regions will be arbitrarily
left-justified (no aligned) as they are part of the variable regions without useful information to establish the
relationship among the sequences*. Repeating this process for all the sequences and aligning the enumerated
match states, the global multiple alignment of the sequences is retrieved from the pHMM.

4These regions ideally represent unconserved or atypical parts of the sequences that are however aligned by classical progressive
methods.
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Figure 6: Upper half: Alignment of 30 short amino acid sequences extracted from the alignment of the SH3 domain.
Because of their degree of conservation, shaded areas have been decided to be the match states and the unshadded area
will be modelled with one state of insertion. Middle half: A pHMM made from the previous alignment. There are 14

main states corresponding to 648 columns in the shadded area, one insertion corresponding to the variable region in the

alignment and two deletions corresponding to gaps in positionl (sequence 8) and in positions 13/14 (sequence 4).Bold
transitions with high probability are shown as strong lines while those with small probabilities are shown as dashed lines.

Transitions with probability zero are not shown. Number in the diamonds are the probability transtition to remain on
that state. Emission in match states are shown as an histogram. Lower half: The same pHMM but using pseudocounts

calculed with Laplace’s rule. [4]
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8.4 pHMM Construction from a set of unaligned sequences

From a set of unaligned sequences, it is possible to construct a pHMM producing the multiple alignment during
the process by using the Viterbi learning or the classical Baum-Welch algorithm. Since both training procedures
find local optima, the selection of the initial model parameters is critical and it must be performed very carefully.
Some suggestions are:

1. Select different starting points to observe (or not) convergence in the results. Start from random points
or from precomputed alignments using greedy algorithms.

2. Use some form of stochastic search algorithm to scape from local maxima (simulated annealing, Monte
Carlo methods, Tabu search).

3. Define sensible transition probabilities (e.g. probability from Match to Match states must be higher than
probability from Match state to Insertion state).

4. Use model surgery to adaptively evolve the architecture during the training process (e.g. erase match
states that have not been frequently visited).

8.5 Searching a database with pHMMs

The most important application of a pHMM representing a family of sequences is finding new sequences in a
database showing a high similarity to the members of this family. Given a database and a pHMM, the sequences
of the database can be aligned to the model using the algorithm of Viterbi, obtaining the most probable path
and the associated probability. This probability can be compared to the score obtained by random sequences
in order to establish the real probability of the sequence (p-value). Then, sequences in the database can be
ordered and filtering using this value. Alternatively, the Forward algorithm can be also employed to obtain the
probability that a new sequence was generated by the model.

As it is known, the cost of performing a multiple alignment of n sequences (k nucleotides) is #(n*). The
cost of Viterbi algorithm is #(kn?) which is clearly lower as long as the pHMM has been trained off-line. The
algorithm of Viterbi is essentially the same, but connections between states are restricted to 3 options taking
into account the class of the current state:

o Mj <+ Mj_1,I;_1,Dj

o [; « M;,I;,D;

o Dy« Mj_1,I;_1,Dj_4

Therefore, the §, A and B functions must be rewritten in terms of match, insert and delete states:

oMy (5 — 1) - aMM(j - 1,5)
51 (5) =01 (O¢) + maz{ 6 ,(j —1)-a’™(j —1,5) (36)
6P, —1)-aPM(j - 1,5)

M (5) - aMI(j - 1,7)
5t (j) = b5(0y) + max{ &/ 1(j)-a'"(j —1,5) (37)
521 (j) - aPT(j —1,5)
ML (G —1)-aMP(j - 1,5)
52 (j) =maz{ 6 _(j —1)-a'P(j —1,)) (38)
§P (G —1)-aPP(j —1,5)
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Figure 7: Basic architecture of the program EcoParse for prediction of genes in E. Coli. The central state is
a silent node. The intergenic region is modelled using a insertion state while the coding regions are described
with a profile HMM for each codon. The thickness of the arrows indicate the fraction of the sequences making
this transition. [4]

9 Application 2: prediction of genes

There are a subset of problems in biological sequence analysis in which is essential to detect some interesting
features (e.g. genes, regulatory elements, exons, ...). Thus, it is very common to define a set of grammatical
rules describing those elements and their connections.

Eukaryotic gene structure (exons and introns) is a classical example of that family of problems that can be
represented using a regular grammar. HMM states can be easily adapted to model exons, introns, promoter
regions, intergenic regions, 5’'UTRs or 3’'UTRs. The probabilities for transitions between states are modelling
the changes in the gene model (e.g. rules defining that an intron can be followed by an internal or terminal
exon). The emission probabilities are based on the different composition of coding and non-coding DNA on
each species.

Each random walk on the HMM has assigned a probability determined by the parameters of the model.
Basically, predict genes on a DNA sequence (the sequence of observations) using a HMM is to obtain the most
likely path of states through the model that produced that sequence (a parse of the sequence). Therefore, the
input sequence will be translated (labelled) into series of states or gene components using the Viterbi algorithm
providing a complete description of the precise locations of each feature. Viterbi equations are preserved
although it must be taken into account that a § function must be maintained for each type of state (exon,
intron, ...).
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Figure 8: Upper half: example of 5-th order inhomogeneous model to analyze the composition in non-coding
regions. Lower half: example of 5-th order homogeneous model to analyze the codon bias in protein coding
regions. For a given state, one of them will be selected to emit the new symbol taking into account the position
in the codon and the previous nucleotides. [6]

The simplest HMM consists of a collection of rings, connected to a central state. Each ring contains one or
more profile HMMSs to produce the 64 available codons. To deal with frameshift or sequencing errors, insertions
and deletions are modelled into the profileHMMs. There is also an additional ring to generate intergenic DNA.
The bias in codon usage is reflected in the probability of making a transition into the corresponding codon
model.

9.1 HMM gene prediction in eukaryotes

To detect exon-defining signals in eukaryotic genes such as Splice sites or Translation signals, a pHMM can be
trained for each type of signal, usually without insert and delete states.

To discriminate between coding and non-coding regions it is frequently used the observed codon bias in
the exonic sequence. Thus, the emission probabilities in the coding states of the HMM can be conditioned
on the 5 previous characters to model dependences between two adjacent amino acids in the protein. This is
implemented using Markov models of order n = 5 which are configured to capture local dependencies between
elements in oligonucleotides having n + 1 elements. Thus, the emission function in the state S; for the symbol
Vi can be rewritten in terms of the previous pentanucleotide:

b (Vi Vi PV v vyt (39)

Higher-order Markov chains (e.g. position weight arrays) can be used to capture correlations between
neighbouring nucleotides in splice site and translation signals as well.

In addition to capture correlations between the previous pentamer and the current nucleotide, it is important
to take into account that these dependencies are differently expressed according to the position in the codon
occupied for the emitted new symbol. Thus, Markov models can be classified as inhomogeneous or homogeneous:
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Figure 9: Length distributions of introns and internal exons in human genome [6].

e Inhomogeneous Markov models (coding regions): Markov models in which every state contains three
diferent emission functions according to the position in the current codon of the region for that state
(nucleotide). Inhomegeneous 3-periodic fifth-order Markov models are usually implemented to detect
dependences within two consecutive codons.

e Homogeneous Markov models (non-coding regions): Markov models in which there is only one emission
function.

9.2 Generalized HMMs

Experimental evidences indicates that the number of exons in a gene does not follow a geometric distribution
(smaller exons are more likely than larger ones). On the contrary, it seems to be a preference in favour of
medium-sized internal exons that could be more easily spliced. Therefore, it is necessary to describe the
probability function of symbol emissions from exon states with an arbitrary distribution.

An important limitation of HMMs is that the length of consecutive strings generate from the same state
are always geometrically distributed. To overcome this problem, the behaviour of the states can be redefined
in the following manner. In a simple HMM, the system is during only one single unit time in a given state,
generating zero or one symbols. In a Generalized HMM (GHMM) ®, the duration of the time spent in each

5GHMM receive also the name of Hidden semi-Markov models or explicit state duration models.
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Figure 10: GHMMs are HMMs in which a state generates zero or more symbols. Thus, self-transitions are
substituted for simple transitions from one state to another, spending a variable amount of time on it [6].

state is defined by a separate probability distibution which depends on the state type, producing zero or more
symbols. Then, the length of predicted exons can be arbitrarily modelled configuring this additional function.
The cost of Viterbi algorithm over GHMMSs becomes prohibitive involving an additional recursion which must
at each position, search back over all previous positions generated on the same state. This expensive cost can
reduced in practice, fixing the maximum length of state durations or following another heuristical approaches.

The generation of an artificial genomic sequence of length L containing gene structures can be performed
following the next steps:

1. Choose an initial state ¢; (function of initial probabilities).

2. Select a state duration [ according to some especific distribution function defined for the type of the
current state.

3. Produce a segment of I nucleotides (emission function for that state). If the system is in a coding state,
the segment will have been generated taking into account the frame, codon position and exon-defining
signals.

4. Move to another state ¢; (function of state transition)

5. Repeat 2..4 until the sum of state durations is L

9.3 Advanced HMM gene prediction
Generalized Pair HMMs

Despite dynamic programming has been widely used in the areas of sequence alignment and gene finding,
traditionally there was no connection between the solutions employed for solving both problems. HMMSs can
also used to perform pairwise sequence alignments (pair HMMs or PHMMs). Changing the emission function,
states in PHMMs produce a pair of symbols corresponding to a match between both input sequences.

Generalized pair HMMs (GPHMMs) are based on GHMMs used to parse a genomic sequence classifiying
every nucleotide into a different category: exon, intron, .... To analyze the information contained in the con-
servation of exon sequence in the same gene from two related species, GPHMM states must produce exon-pairs
according to some predetermined joint distribution. Thus, the final product of the model is a global sequence
alignment incorporating the annotation of exons in both organisms simultaneously. Allowing to produce sym-
bols in one of the two sequences, it is possible to align cDNAs or proteins to genomic regions, improving the
quality of the annotation.
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Figure 11: GENSCAN architecture: each circle represents a functional unit of a gene (exons and promoter
elements) whereas each diamond corresponds to non-functional elements (introns, UTRs and intergenic regions).
The system is divided into two parallel parts to detect genes in both strands of the DNA sequence [6].

HMM sampling

Optimization algorithms usually provide the best solution for a problem which may strongly depend on a
particular set of parameters. However, it has frequently been observed with most deterministic strategies that
biologically significant elements (real splice sites, exons or transcription factor binding sites) are classified as
suboptimal solutions.

HMM sampling algorithm is a variant of the forward and backward algorithms based on randomly sampling
state paths from the HMM, in order to find the optimal solution and addtionally other suboptimal solutions. This
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alternative to the Viterbi algorithm has been employed to find genes affected by alternative-splicing including
conserved forms between related organisms.

10 Bibliography

This work pretends to be a simple but comprehensive introduction to the exciting field of Hidden Markov models
from an algorithmic and statistic point of view, including elemental procedures as Forward, Viterbi, Backward
and Baum-Welch algorithms. Two important HMM applications in bioinformatics have been covered: alignment
of sequences (profiles) and prediction of genes. Obviously, there are very important topics that have not be
discussed here as the architecture of the HMM or more complex techniques for training such as using complex
mixtures of data to set up the model (pseudocounts). Moreover, there was not room for important applications
of HMMs inside and outside bioinformatics (e.g. speech recognition).
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